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On the Number of Trials Required to Estimate Specificity 
to a Given Confidence Level 

The purpose of this white paper is to describe how to compute the number of “null” case trials 

needed in order to estimate Specificity to a given Confidence level. For example, suppose 200 

null measurements are made with no false alarms. What is the relationship between estimated 

Specificity and Confidence? Or, suppose it is required to demonstrate that a particular detection 

algorithm achieves a Specificity of at least 99%, with an associated Confidence of 95%. How 

many trials must be run to claim that such a requirement has been met? 100? 300? 1000? 

Specificity and the Null Trial 

Consider a Rapid Diagnostic Test, such as a Lateral Flow Assay, which for our current purpose is 

used solely as a positive/negative diagnostic. While there are only two possible outcomes, 

there are actually 4 possible conditions which produce them: (1) true positive; (2) false positive; 

(3) true negative; and (4) false negative. Given these conditions, Sensitivity is the measure of 

the true positive rate, while Specificity is the measure of the true negative rate. Here we 

concern ourselves with Specificity, though the identical set of calculations shown below can be 

applied to Sensitivity. 

In order to determine Specificity for a given algorithm/assay combination, a series of trials must 

be performed in which the underlying condition is known to be negative i.e. a “Null Trial”. For 

each trial, the detection algorithm assigns a positive or negative result (of course, any positive 

result is a false positive, while any negative result is a true negative). Given the outcome of 

these trials, what is the estimated Specificity and its associated Confidence level? 
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The Bernoulli Experiment – Probability Distribution 

For convenience, instead of discussing Specificity directly, it is conceptually easier to frame the 

discussion in terms of the false positive rate, or 1 – Specificity. A set of trials as described 

constitutes a Bernoulli experiment and offhand, the underlying statistics are described by the 

quite familiar Binomial probability distribution: 
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where n  is the total number of trials, 
fpn  is the number of false positives and 

fpP  is the 

probability of a false positive (i.e. 1 – Specificity) 

Unfortunately, in words, this expression tells us the probability of obtaining 
fpn  false positives 

out of n  trials given some specified probability
fpP  of obtaining a false positive. However, in our 

case, we have an experimentally determined number of false positives, but an unknown false 

positive probability. Essentially, we need the inverse of what the Binomial distribution is telling 

us. That is, we would like to determine the probability 
fpP  of obtaining a false positive given 

our measured 
fpn  false positives out of n  trials. To determine this inverse relationship, we 

invoke Bayes’ theorem (here assuming a uniform “prior”) and find  
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The inverse Binomial expression looks almost identical to the “forward” Binomial expression 

with only a slight change in the Binomial coefficient (i.e. ( 1)!n    instead of !n ). However, it is 

important to note that the Binomial distribution is a discrete function of the unknown variable 

fpn , while the inverse Binomial distribution is a continuous function of the unknown variable 

fpP . This is made clear by their respective normalization conditions: 
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Estimating Confidence 

Working with the inverse Binomial distribution, the Confidence   in any estimate P  of the 

false alarm probability is given by the following integral relationship: 
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Substituting the expression from Eqn (2) for the inverse Binomial distribution into Eqn (4) yields 

a known integral function called the Incomplete Beta Function 
P

  (with arguments as shown): 

 ( 1, 1)P fp fpn n n


       (5) 

For certain conditions of interest, the Incomplete Beta Function reduces to quite simple 

expressions. For example, suppose in our Bernoulli experiment that there are no false positives 

i.e. 0fpn  . In this case, Eqn (5) simplifies to 

 1(1, 1) 1 (1 )n

P n P
          (6) 

This then shows a very simple relationship between Confidence  , the associated Specificity 

1 P  and the number of trials n . Now suppose that there is one false positive in the 

experiment. In this case, Eqn (5) reduces to 

 (2, ) 1 (1 ) ( 1)n

PB n P nP
          (7) 

This is only slightly more complicated, but still quite tractable. 
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Specificity and Confidence – Graphical Representation 

The following figures illustrate the utility of Eqn (5) and the relationship between Confidence, 

Specificity, the number of false positives and the total number of trials. In Figure 1, we assume 

there are no false positives in our Bernoulli experiment and show Specificity as a function of the 

number of trials for 3 different Confidence levels. Consider an experiment with 20 trials. In this 

case, we see from the plot that with a Confidence of 99%, the Specificity is at least  80%. As we 

decrease our desired Confidence, the limiting Specificity increases. This makes sense. That is, we 

can claim a higher Specificity, but only at the expense of a reduced Confidence in that value. 

The plot can be utilized in another way. Suppose we require a Specificity of 95%. In this case, we 

see that if we also require a Confidence of 90%, this can be achieved with about 45 trials, 

provided there are zero false positives. On the other hand, if we require a Confidence of 99% 

for the same Specificity, then we need to double the number of trials to ~90. 

In Figure 2, we again show Specificity versus the number of trials. In this case, the Confidence is 

fixed at 99%, and the 3 curves show the effects of varying the number of false positives within 

any given set of trials. Note that the blue curves in each plot represent the same conditions 

with 99% Confidence and zero false positives, but that the range of the vertical axes are slightly 

different. Again, in this plot, the behavior is easily understood. For a fixed number of trials, the 

Specificity decreases as the number of false positives increase. For a fixed Specificity, the 

number of trials required increases as the number of false positives increase i.e. an increased 

number of false positives needs a larger set of trials to preserve the false positive rate. 

The final plot, shown in Figure 3, displays the relationship between Specificity and Confidence 

for a fixed number of trials. The “inverse” relationship between Specificity and Confidence is 

clear, with claims of increasing Specificity only being able to be made at the expense of 

decreasing Confidence. 
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Summary 

This white paper provides the definitions and formulas required to assess the results of any 

study attempting to assess Specificity. It has been made clear that any estimated value of 

Specificity must be accompanied by an associated Confidence level, that these values are 

essentially “inversely” related, and that they in turn are dependent upon the total number of 

trials performed and the number of false positives obtained. 

FIGURE 1:  Specificity vs. number of trials with no false positives, and with curves shown for 
Confidence levels of 90%, 95% and 99%. 
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FIGURE 2: Specificity vs. number of trials with Confidence = 99%, and with curves shown for 
0, 1 and 2 False Positives. 

 

FIGURE 3: Specificity vs. Confidence with number of trials fixed at 200,  and with curves 
shown for 0, 1 and 2 False Positives. 


